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ABSTRACT 

Voice over Internet Protocol (VoIP) is an emerging technology with the potential 

to assist the United States Marine Corps in solving communication challenges stemming 

from modern operational concepts.  This thesis conducts a review of VoIP standards and 

develops an H.323-based testbed for the study of tactical wireless VoIP performance.  

Methods of collecting and presenting voice quality parameters in packet-based networks 

are explored.  Incorporation of an Adtech SX/14 Data Channel Simulator provides user 

control of a SONET-simulated wireless channel.  Experiments quantify the effect of 

channel injected error rate on received voice traffic.  Plots are generated to illustrate the 

relationship between channel error rate, packet loss, and the listening quality mean 

opinion score.  Experimental results are extended by incorporating E-model delay 

considerations.  Commercial voice recognition software is successfully used to measure 

the impact of the channel on speech intelligibility.  The experiments and analysis 

conducted provide a cost effective approach to non-intrusive, objective voice quality 

assessment. 
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EXECUTIVE SUMMARY 

The evolution of digital technologies in the voice communications market 

presents new opportunities for organizations to achieve economic and performance 

savings.   Circuit switched networks are being replaced by more efficient packet-based 

designs.  As these improved networks permeate voice communications, organizations 

combining voice and data onto a common platform can reduce management and 

equipment costs.   

Voice over Internet Protocol (VoIP) is one of the applications driving the trend 

towards converged packet-based networks.  VoIP has enjoyed success in enterprise-level 

deployments of civilian and military facilities throughout the globe.  Extending the reach 

of VoIP applications to the tactical military environment will assist in the reduction of a 

unit’s logistics footprint.  Administering a single converged network also allows the 

military to train a reduced variety of occupational specialties for maintenance needs.  

Among tactical units, wireless enabled VoIP would also facilitate operations in areas of 

reduced or damaged telecommunications infrastructure.  The United States Marine 

Corps’ vision for greater dispersion across the battlespace supports the demand for 

innovative communications solutions.  Mobile wireless capabilities required for tactical 

actions offer less predictable performance when compared to a fixed, wired network 

design.  Theses factors provide the motivation for this thesis research. 

The objectives of this thesis are divided among two principal tasks.  First, this 

research develops a flexible, scalable VoIP testbed based on the H.323 standard.  Using the 

Adtech SX/14 Data Channel Simulator, the experimental VoIP network provides user control 

of a SONET-based representation of the wireless channel.  The effect of channel bit error 

injection is monitored for effects on packet loss, received voice file listening quality mean 

opinion score (MOS-LQK), and remaining speech metrics.  Second, this thesis investigates 

methods of collecting and presenting voice quality parameters in packet-based networks.  

Emphasis is placed on non-intrusive, objective voice quality assessment methods that 

accommodate dynamic testbed topologies. Additionally, predicted delay effects are 

quantified, using the E-model, and presented as an extension to experimental results. 



 xvi

VoIP implementation is primarily divided among two competing standards for 

call signaling and control.  Session Initiation Protocol (SIP), a product of the Internet 

Engineering Task Force (IETF), uses a series of text-based message exchanges to control 

audio, video, and data transfer sessions.  SIP’s control features are similar to the approach 

developed within Hypertext Transfer Protocol (HTTP).  In contrast, H.323 has emerged 

from sources related to more traditional telephone standards, the International 

Telecommunications Union (ITU).  While IETF and ITU feature disparate VoIP call 

control and signaling structures, both standards use Real Time Protocol (RTP) 

encapsulated within a User Datagram Protocol (UDP) packet for the end-to-end transport 

of sampled voice data.  The unreliable nature of this form of telephony imposes network 

effects on the performance of voice related services. 

Degradation of voice quality in any communications system can be broken into a 

set of additive impairment factors: echo, delay, and clarity.  Once the impact of network 

effects is quantified among these subdivided metrics, the cumulative impact on voice 

quality is reported according to ITU-defined standards for subjective, objective, or 

predictive testing methods.   Subjective testing requires a costly and time consuming 

direct interaction between human subjects for experimentation.  In an effort to maximize 

scalability and flexibility of the testbed, this thesis explores ITU methods of objective and 

predictive voice quality assessment.  Results from testbed techniques are presented in a 

MOS-LQK format, where 1 is bad and 5 is excellent in voice quality.  Results from 

objective and predictive methods are highly correlated to scores obtained through 

subjective tests.  Measurements can be obtained from a single receiver terminal without 

direct input from uncorrupted reference file transmission.  This non-intrusive, single-

ended structure provides added testbed flexibility for future research efforts. 

The testbed design developed in this thesis incorporates Cisco 2851 and 7200 

routers to replicate a two-site, distributed call processing model.  Each site conducts 

independent call processing using Cisco 7825 Media Convergence Servers (MCS) 

running CallManager 5.0.  A web-based configuration utility allows testbed users to set 

the network codec and manage devices registered to the CallManager software.  The 

Adtech SX/14, positioned between each Cisco 7200 router, provides wireless channel 



 xvii

simulation between CallManager clusters.  Reference files for voice experimentation are 

maintained on a MCS for selective playback initiated through a call hold sequence.  

Network packet traffic analysis, VoIP call recording, and speech recognition are provided 

by Wireshark 0.99.5, Cain and Abel v4.9.1, and Dragon NaturallySpeaking software 

tools, respectively. 

Experimentation shows valid Gaussian distributed random error rates can range 

from 121 10−×  to 52 10−×  error/bit.  Errors injected at a rate greater than 52 10−×  produce 

link failure between the Cisco 7200 routers.  Each codec suffered a corresponding decline 

in MOS-LQK as channel errors increased.  Experiments achieved an approximate MOS-

LQK range of 4.5 to 3.5 for G.711 and 3.7 to 3.5 for G.729.  Except for the most severe 

error rate available to the testbed, G.711 provided superior MOS-LQK performance for 

all data points.  Analysis reveals a decrease in MOS-LQK consistent with the increase in 

lost packets for both codecs.  G.729 tests suffered less overall packet loss compared to 

G.711 runs.  Remaining speech computation revealed an important distinction between 

the perception of VoIP listing quality, measured by MOS-LQK and intelligibility.  Files 

captured at lower MOS-LQK scores still managed to deliver near perfect remaining 

speech results.  G.729 with a MOS-LQK of 3.7 provided superior comprehension to the 

listener when compared to G.711.  Experimental results were extended by analytically 

incorporating E-model predicted delay effects, which estimate decreased user VoIP 

quality satisfaction related to satellite links.  Military applications may favor the benefit 

of voice connectivity in remote regions over the impairment effect of geosynchronous 

satellite delay. 

The objectives of this thesis were explored and successfully addressed.  Military 

deployment of wireless VoIP solutions in a tactical environment requires a dedicated 

platform for experimentation.  A reconfigurable H.323-based VoIP testbed was 

developed and studied using ITU recommended voice quality measurement techniques.  

Objective, non-intrusive voice quality measurement methods were introduced for future 

research efforts. 
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I. INTRODUCTION 

The past two decades have witnessed a transformation in the technologies used to 

provide commercial voice services.  Traditional telecommunications, previously divided 

among broadcast and point-to-point applications, are rapidly converging to a unified 

model of diverse applications that promise to revolutionize the fractured concepts of 

multimedia exchange.  Just as cable companies challenged the notion of television, the 

Internet based transfer of voice traffic is poised to revolutionize modern telephony. 

The evolution of cellular phone technology offers a case study on the impact of 

disruptive inventions of the last century.  Over the course of four decades, cellular phone 

subscribers have emerged as the dominant population in the world telephone market [1].  

The next generation of cellular technology plans to upgrade mobile subscribers to an all 

packet-based network.  This surge in development has largely been fueled by the 

associated transformation of wireline services incorporating another disruptive 

technology, Voice over Internet Protocol (VoIP).   

When VoIP pioneers started plugging microphones into their computers in the 

1990s, the economic impact shocked the telecommunications industry.  Near ubiquitous 

broadband Internet access in major markets allowed reasonable quality voice connections 

directly between PC terminals.  PC-to-PC calling suddenly offered a cheap innovative 

alternative to regular phone service.  These early toll bypass exchanges lacked well 

accepted implementation standards and reliability.  In contrast, the international standards 

of today make VoIP a dependable telephony option across the globe.  Interconnections 

with the Public Switched Telephone Network (PSTN) have extended the scope and 

flexibility of VoIP.  Faced with the prospect of losing millions of subscribers, telephony 

providers now compete for consumers with bundled data, video, and voice packages that 

often utilize VoIP technology [2].   

The transformation of civilian communications continues to shape and influence 

military voice services.  VoIP joins the growing collection of satellite and terrestrial 

based tools the military relies on for command, control, communications, computers and 
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intelligence (C4I).  These links are critical to the vision outlined in [3].  Publication of [3] 

officially updated and unified the core operational capabilities described by Operational 

Maneuver from the Sea (OMFTS), expeditionary maneuver warfare (EMW), and 

Distributed Operations (DO).  These operating philosophies, collectively referred to as 

the Coherent Concepts, place strenuous demands on C4I capabilities.  VoIP is part of a 

broad solution to growing military demands for multimedia capability in expeditionary 

environments.  

Cost, capacity, and performance limitations continually challenge our efforts to 

network expanding battlespace geometry.  Applications joining the existing architecture 

face increased competition for bandwidth allocations.  At the tactical level, factors are 

exacerbated by link distance, mobility, and hostile environments.  Efforts to improve 

network capacity must be complimented by a focus on the efficient use of existing 

resources.  Advanced wireless technologies combined with VoIP provide comprehensive 

solutions to many networking hurdles.  Figure 1 provides an illustration of potential 

network links augmented by IEEE 802.11 and 802.16 capabilities. 

 

 
Figure 1.   A Vision of Future Converged Battlefield Communication Links 
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Current VoIP technologies are young and less understood when applied to the 

wireless domain.  Significant wireless VoIP research focus has emerged from the mobile 

phone community.  Industry efforts into VoIP may serve goals that diverge from military 

specific tactical applications.  The prospective savings Department of Defense can 

achieve through converged system administration, reduced PSTN hardware expenditure, 

and improved enterprise level efficiency provides a monetary incentive for VoIP 

research.  Economic gains are enhanced by the capabilities set wireless packet-based 

communication offers to the Coherent Concepts vision.  

A. OBJECTIVE 

This thesis contains two principal objectives.  First, a detailed review of standards 

for VoIP call signaling and control provides the necessary knowledge to construct a 

testbed for wireless VoIP implementation.  The design provides a scalable architecture to 

address the need for a flexible VoIP platform for extended research efforts at the Naval 

Postgraduate School.  Operator controlled channel loss replicates the environment packet 

traffic is most likely to experience during wireless hops.  Second, this thesis investigates 

methods of collecting and presenting voice quality parameters in packet-based networks.  

Emphasis is placed on non-intrusive, objective voice quality assessment methods that 

accommodate dynamic testbed topologies. Additionally, speech intelligibility and delay 

effects are quantified and presented. 

B. RELATED WORK 

Zhang, Yang, and Quan introduce a simulation framework incorporating wireless 

links for packet-based voice communications analysis in [4].  System performance and 

speech quality are examined with an emphasis on applications to the cellular phone 

market.  International Telecommunications Union - Telecommunication Standardization 

Sector (ITU-T) Recommendations for intrusive network testing are used to extract 

objective scores via a Perceptive Evaluation of Speech Quality (PESQ) model [5].  

Objective scores are compared to the well establish subjective scoring system, also 

described within ITU-T publications [6]. 
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Zurek, Leffew, and Moreno provide a review of popular objective measurement 

methods, including PESQ, for VoIP voice quality [7].  A testbed for a packet-based voice 

network using high compression codecs is described.  This research reveals credible 

correlation between subjective scores and three separate objective assessment techniques 

for files using G.729 and G.723.1 compression algorithms. 

Chemick conducts a fundamental investigation regarding the potential use of 

voice recognition techniques for voice intelligibility measurement [8].  This work centers 

on highly compressed digital voice transmissions.  Conclusions from the study of voice 

recognition technologies suggest future work involving the application of commercial 

software for collection of call intelligibility data.  Expansion of this technique is explored 

in [9] for MATLAB simulated wireless VoIP traffic and popular internet based VoIP 

services. 

Channel simulation using the same hardware available for this thesis is described 

in a NASA research paper [10] used to validate operation of the Space Communications 

Protocol Suite Transport Protocol (SCPS-TP).  Experiments contained in this publication 

use the Adtech SX/14 Data Channel Simulator to model ground to satellite conditions for 

a performance evaluation of transport protocols. 

This thesis leverages the lessons of the related material in an effort to extend VoIP 

quality assessment across a wireless channel.  References [4] and [10] were useful guides 

in recognizing the vision of a wireless VoIP testbed design.  Previous work has focused 

on the implementation of intrusive objective network monitoring techniques.  This 

research effort is based on a non-intrusive approach to objective assessment of voice 

quality.  The combination of lessons from [7] and [9] provide the basis for novel 

objective measurement methods of call clarity with promising correlation to subjective 

methods. 

C. THESIS ORGANIZATION 

This thesis is organized as follows.  Chapter II provides a primer on VoIP 

standards with a focus on the H.323 structure used for this thesis testbed design and 

experimentation.  Chapter III explores the metrics and methods associated with 
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measuring call quality in packet-based communication systems.  Chapter IV introduces 

the testbed designed for this thesis.  Chapter V identifies the limitations of the testbed and 

presents the result of thesis experiments.  Chapter VI concludes this study with 

contributions of this work and suggestions for future expansion and improvement of 

similar research efforts.  Appendix A and B provide a demonstration of step required for 

data collection and configuring elements of the testbed for experiments, respectively. 
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II. INTERNET PROTOCOL TELEPHONY 

The evolution of the telephone traverses both analog and digital technologies.  

The current surge in VoIP interest focuses on a paradigm shift from circuit to packet-

based communication.  The increased efficiency of packet-based systems drives 

economic incentive to telecom providers and end users alike.  Improvement to a 

telephony provider network generates cost savings, expanding their ability to serve a 

growing subscriber population.  In contrast, disruptive technologies like VoIP offer more 

choices for the consumer outside traditional markets.  Service providers, such as Skype 

and Vonage, have thrust Internet-based services to the forefront of modern 

telecommunications.  The acceptance of VoIP within the consumer market will likely 

depend on a reliable protocol structure that ensures quality and scalability for the future.  

Goode outlines some of the engineering and standardization challenges to ubiquitous 

VoIP [11].  This chapter introduces two of the most prevalent standards, Session 

Initiation Protocol (SIP) and H.323, with an emphasis on H.323 for use in the thesis 

testbed.   

A. SIP 

The Internet Engineering Task Force (IETF) introduced the SIP protocol in 1996 

as RFC 2543. The most current SIP version is available in RFC 3251 [12].  SIP is often 

viewed as an approach to IP telephony aligned with web applications or domain name 

service.  SIP only assumes application level signaling duties required to establish a call 

session.  Voice traffic is carried over additional protocols outside of the scope of the RFC 

3251.  SIP exchanges sequenced messages, similar to Hypertext Transfer Protocol 

(HTTP), between network elements using a client-server model.  A sample call sequence 

is illustrated in Figure 2.  Messages are divided into either request or response categories.  

Response messages also split into a numbered class system.  Examples of the request and 

response message format are shown in Table 1.  This fairly simple structure has made SIP 

an attractive alternative to the more complex H.323.   
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Figure 2.   SIP Call Sequence: User A initiates a voice call to User B 

 

SIP Request Purpose  Response Classes Purpose 

INVITE Invite a user to a call  1XX Informational 

ACK Acknowledge  2XX Successful 

OPTIONS Get server capabilities  3XX Redirect 

BYE Close or deny call  4XX Client Error 

CANCEL Terminate action  5XX Server Error 

REGISTER User Location Report  6XX Global Failures 

INFO Mid session signal    

Table 1.   SIP Request and Response Formats 

 

As with any young IETF protocol, there are still issues ripe for debate and 

improvement through the RFC process.  SIP has faced some PSTN interoperability 

challenges during the first decade of use [13].  Such limitations have, in part, led to 

greater market penetration of H.323 based hardware.  Undoubtedly, the continued 

evolution of SIP will provide some of the most serious competition among VoIP 

standards.    
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B. H.323 

The oldest and most prevalent VoIP protocol in use is ITU-T Recommendation 

H.323.  Its initial release took place in 1995 under the name, “Visual Telephone Systems 

and Equipment for Local Area Networks Which Provide a Non-guaranteed Quality of 

Service.”  H.323 version 2, changed the name to “Packet-based Multimedia 

Communications Systems.”  Version 6, released in 2006, is the most current update of the 

H.323 standard [14].   

When the ITU-T set out to address the growing demand for a protocol addressing 

transmissions across packet networks, they turned to the existing H.32X family of 

protocols.  This collection of ITU-T Recommendations governs multimedia transfer 

across disparate networks.  Figure 3 shows the interrelationship of H.32X series 

protocols.  One product of this lineage has been an intense focus on interoperability with 

diverse worldwide telecommunications systems.  Protocol design challenges are 

magnified by the appetite for more powerful combined services (e.g., video 

conferencing).  In this light, VoIP has merely surfaced as the most visible application of 

choice.  The remaining sections of this chapter explore the components and control 

structures required for proper VoIP operation in a network using H.323. 

 
Figure 3.   ITU-T Recommendation H.32X Family (from [15]) 
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C. H.323 COMPONENTS 

The scale and structure of any H.323 VoIP network can vary widely based on the 

needs of the users it is designed to service.  Typical large scale fielding of voice service 

requires several administrative areas subdivided into subordinate elements.  These 

divisions often take place along geographic or management boundaries (e.g., cities and 

facilities).  The basic building blocks of these networks are VoIP zones.  Each zone 

contains a variable mix of the four fundamental H.323 components.  Logically, these are 

individual components.  Some hardware (e.g., Cisco routers) can combine logical duties 

within a single physical device [14].  The top of Figure 3 shows a sample VoIP zone. 

1. Terminals 

Terminals act as the human interface for a real time, full duplex multimedia 

exchange.  H.323 requires all standard compliant terminals to offer audio session support.  

Video and data capabilities are an optional extension to basic voice service.  Terminals 

can be PCs or stand alone devices.  H.323 terminals are compatible with terminals from 

the full H.32X family of protocols. 

2. Gateways 

In VoIP structures, there are three general call architectures describing 

connections between terminal types, IP to IP, non-IP to IP, and non-IP to non-IP.  A 

gateway allows H.323 terminals to share multimedia with dissimilar networks.   

 

 
Figure 4.   H.323 Gateways with PSTN Bypass 
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Figure 4 shows gateways used for voice stream translation and toll bypass of 

normal PSTN service.  This format is common in organizations that want to reduce flow 

across high cost connections.  PSTN or alternate trunks are often maintained for 

redundancy.  Call connections are possible for all combinations of the associated 

terminals in the illustration.  There is no defined limit to the number of gateways within a 

VoIP zone. 

3. Gatekeepers 

Gatekeepers perform tasks, such as admission control, address translation, billing, 

and gateway management.  As the scale of VoIP zones increases there are often 

competing interests for limited resources on the converged packet network.  Gatekeepers 

have the ability to control bandwidth allocation to registered terminals.  Additional 

functions include directory and call control assistance.  Gatekeepers are an optional 

component within the H.323 standard.  When used, only one gatekeeper may reside per 

VoIP zone. 

4. Multipoint Control Units 

Multipoint Control Units (MCU) are composed of a Multipoint Controller (MC) 

and an optional number of Multipoint Processors (MP).  Combined, these units conduct 

call control for conferences of three or more multimedia endpoints.  The MCU carries out 

the capability exchange and selection of communication mode for conference sessions.  

MCUs may have the ability to convert between different media formats (audio, video, 

and data), and bit rates among terminal devices. 

D. H.323 SIGNALING AND CONTROL 

Call signaling and control define the logical measures required to setup, maintain, 

and teardown a multimedia session.  H.323 enlists a collection of protocols, shown in 

Figure 5, to accomplish the mixture of tasks necessary for managing communication 

links.  The TCP/IP suite provides a solid foundation for reliable and best effort transport 
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of H.323 related messaging.  This section will explore those signal and control structures 

critical to VoIP applications.  An introduction to Real-time Transport Protocol (RTP) is 

included.   

 

 

 
Figure 5.   H.323 Protocol Relationships 

  

1. H.225.0 Registration, Admission, and Status (RAS) 

Gatekeeper components employ the RAS to convey registration, admissions, 

bandwidth change, and status messages.  Exchanges take place across an unreliable 

channel via User Datagram Protocol (UDP) subject to timeout and retransmission.   

During the termination phase of a call sequence, this channel handles disengagement of 

registered endpoints from the assigned gatekeeper.  Detailed review of gatekeeper 

messaging is available from [14] and [16]. 

2. H.225.0 Call Signaling 

The call setup process shifts from the RAS channel to a reliable TCP connection 

for endpoint signaling.  The H.225.0 call signaling channel is designed to manage 

concurrent call requests.  All messages conform to the Q.931 Integrated Services Digital 

Network (ISDN) control format [17].  Networks equipped with a gatekeeper select one of 

two options for H.225.0 message routing.  In the absence of a gatekeeper, signaling 

passes between endpoints. 



 13

a. Direct Endpoint Signaling 

When direct endpoint signaling is used, the source component starts the 

process by sending an admission request to the gatekeeper on the RAS channel.  The 

gatekeeper confirms or rejects the request according to configured management 

parameters via the same RAS channel.  Confirmation results in a setup message 

transmission from the source endpoint directly to the target endpoint.  After a final RAS 

exchange the receiver endpoint responds with a connect message.   

This signaling structure allows the gatekeeper to manage bandwidth and 

accounting while distributing some of the processing action among endpoints.  Call 

volume and duration data can be stored from the RAS and disengage messaging that 

bracket each session.  Figure 6 illustrates a direct endpoint signaling exchange.  This 

model can also be extended to more complex architectures using multiple gatekeepers.  

Extensive discussion of scaled network design, with an emphasis on call control, can be 

found in [18].  Networks void of gatekeepers use direct endpoint signaling without a RAS 

exchange.   

 

 

1 2 4 5
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3
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Endpoint 1 Endpoint 2

Gatekeeper Cloud

RAS Channel Messages

Call Signalling Channel Messages

1  ARQ
2  ACF/ARJ
3  Setup
4  ARQ
5  ACF/ARJ
6  Connect

 
Figure 6.   Direct Endpoint Signaling (from [14]) 
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b. Gatekeeper Routed Signaling 

Gatekeeper routed call signaling is an alternative call control format to 

direct endpoint signaling.  This form of routing forces all signaling traffic flow along a 

strict path through a gatekeeper.  Consequently, greater overall message volume is 

required to establish a communication session using gatekeeper router signaling.  Figure 

7 illustrates a direct endpoint signaling exchange.  Cisco IOS does not support this form 

of routing within gatekeeper components [19]. 
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7  Connect
8  Connect

 
Figure 7.   Gatekeeper Routed Signaling (from [14]) 

 

3. H.245 Call Control 

After the initial signaling for a multimedia session is complete, call control 

messaging establishes additional coordination between endpoints prior to the start of 

multimedia transmission.  H.323 conducts call control using the H.245 protocol detailed 

in [20].  The H.245 call control channel is governed by the same direct or gatekeeper 

enabled path options that manage H.225.0 flow.  This thesis will focus on the direct call 

control model. 

H.245 messages can be grouped into four categories:  request, response, 

command, and indication.  Endpoints use H.245 to elect a master multipoint controller, 

exchange Terminal Capability Set (TCS), and agree on communications procedures 
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supported by all parties.  H.245 is also responsible for establishing a logical channel for 

multimedia transfer.  This logical channel remains open for the duration of a call session.  

Additional flow control and general purpose commands complete the basic H.245 

functions. 

4. Audio Codecs 

One key portion of the H.245 TCS exchange for a VoIP session involves the 

audio codec established for the logical channel voice stream.  Codecs convert and 

compress the voice signal into a scaled bit stream for transport, but the application of a 

codec is an isolated segment of the larger signal processing path.  Figure 8 illustrates the 

general signal flow. 

 

 

 
Figure 8.   Signal Processing Steps 

 

 

The voice signal arriving at a terminal microphone is typically sampled at 8000 

Hz, preserving spectral content up to 4000 Hz and below for processing and 

reconstruction [21].  Samples are transformed into a digital representation of the original 

waveform according to the codec specification and compression algorithm.  The sample 

rate, sample size, and compression ratio determine the bit rate of a codec.  As the packets 

are prepared for transmission, each codec provides a different size block of data for the 
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voice payload.  Table 2 contains a comparison of popular codecs maintained under the 

ITU-T G.7XX family of recommendations [22, 23].  All H.323 terminals are required to 

support G.711. 

 

Codec Voice Block Size 
(bytes) 

Compression 
Ratio 

Bit Rate 
(kbps) 

G.711     PCM 80 1:1 64.0 
G.723.1  MP-MLQ 240 10:1 6.3 
G.723.1  MP-ACELP 240 12:1 5.3 
G.726     AD-PCM 80 2:1 32.0 
G.728     LD-CELP 80 4:1 16.0 
G.729A  CS-ACELP 80 8:1 8.0 

Table 2.   Codec Comparison (after [24]) 
 

5. Real-Time Transport Protocol (RTP) 

RTP is an IETF protocol [25] designed to support the real-time transfer of data 

between two or more members of a multimedia session.  Riding above the UDP transport 

layer, RTP focuses on providing timely media delivery rather than reliable services to 

session participants.  VoIP calls in an H.323 system pass packetized bit streams from the 

codec down the RTP-UDP-IP stack.  A typical link level packet format is shown in 

Figure 9. 

 
x bytes 20 bytes 8 bytes 12 bytes x bytes 

Link Header IP Header UDP Header RTP Header Voice Payload 
Figure 9.   VoIP Packet Structure 

 

RTP header values include data source, timestamp, sequence, and payload 

identification fields to assist in the recovery of media packet data.  Sequence and time 

information facilitate endpoint activities to defeat negative network effects to packet 

delivery.  Buffers allow sequence and time data to assist during reconstruction of original 

packet order and a reduction in delay variation for final transmission.  RTP header values 

also facilitate network statistical analysis by tracking the distribution and rate of packet 
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loss.  RTP does not provide any form of error detection or control.  Figure 10 provides a 

detailed view of the common VoIP header fields. 

RTP Control Protocol (RTCP) is a companion protocol defined within RFC 3550.  

RTCP manages quality of service, identification, session scaling, and session control of 

the RTP stream [26].  RTCP packets are issued periodically, using a separate port 

number, to session members in a multicast fashion.  

RTP 
V P X CC M Payload Type Sequence Number 

Timestamp 
Synchronization Control Source 

            
UDP 

Source Port Destination Port 
Length Checksum 

            
IP 

V HL TOS Total Length 
Identification Flags Fragment Offset 

TTL Protocol Header Checksum 
Source IP Address 

Destination IP Address 
Options 

Figure 10.   RTP-UDP-IP Headers 

 

E. H.323 VOIP CALL SEQUENCE 

Signaling tasks in a VoIP call sequence are divided into five phases [14].  This 

section focuses on actions carried out during the signaling phases related to a VoIP call 

sequence for networks void of any gatekeeper component.   

1. Call Setup 

Call setup, the first phase of the call sequence, proceeds according to the 

configuration of components on each end of a potential multimedia exchange.  In the 

absence of a gatekeeper, endpoints conduct direct signaling and bypass the need for 

bandwidth reservation requests.  The lack of endpoint synchronization during this phase 
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introduces the risk of simultaneous setup requests.  To handle the potential for concurrent 

requests, endpoints provide a busy response to incoming call requests while waiting for 

replies from their own setup messages.  Endpoints expect a response within four seconds 

of a successful setup message transmission.  Figure 11 shows the call setup message 

sequence with direct signaling.     

 

 
Figure 11.   Direct Endpoint Routing Call Setup Message Exchange 

 

2. Initial Communications and Capability Exchange 

After endpoints exchange call setup information, they establish a direct H.245 

channel.  TCS information starts the H.245 message flow through the control channel.  

Following confirmation from both sides, via TCS Ack messages, the codec is selected for 

VoIP service.  If any interruption occurs during the TCS exchange, the control process 

stops and reinitiates a new TCS message.  Endpoints that receive a TCS halt active 

communication until they can respond and negotiate the required channel controls.  

Following TCS messaging, the endpoints conduct a Master/Slave Determination (MSD) 

to elect the active MC device for any conference call events.  All message exchanges are 

permitted up to three total transmissions before a communication failure is tagged within 

this phase.  Retransmission failures result in a shift from the capability exchange phase to 

call termination.   Figure 12 depicts a successful direct endpoint TCS and MSD 

exchange.   

Setup 

Call Proceeding 

Alerting 

Connect 

Endpoint 2 Endpoint 1 



 19

 
Figure 12.   Capability Exchange and Master Slave Determination Sequence 

 

3. Establishment of Audiovisual Communication 

The third phase of the call sequence opens a logical channel configured for the 

type of multimedia transfer among the select number of endpoints.  Audio specific 

applications, like VoIP, ride on the unreliable RTP-UDP-IP stack.  The remaining actions 

available within this phase are associated to multipoint audio conferencing or logical 

channel control for video transfer.  Figure 13 illustrates the message exchange used to 

open a logical channel for the typical two-party VoIP applications. 

 

 
Figure 13.   Control Message Exchange to Open Logical Channel 
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Alternate audio oriented options to the message flow include media stream 

address distribution, conference matching to RTP streams, and communications mode 

command procedures.   MCU components conduct address assignment for conference 

endpoints.  The MC element of the MCU determines the unicast or multicast structure of 

conference sessions.  The MC can direct the open and close of logical channels to achieve 

the desired centralized or decentralized control format of the conference.   

4. Call Services 

Once the VoIP RTP stream has been established, a group of H.245 commands 

provide additional services during the active call period.  Variable rate codecs and 

bandwidth controlled networks have the ability to apply bandwidth changes to a call in 

progress.  These channel modifications are carried out by closing the original logical 

channel, opening a new updated logical channel, and seamlessly transferring user traffic 

to the new connection. 

Phase four of the call sequence also allows ad hoc conference expansion.  Figure 

14 shows a new user (Endpoint 3) negotiating admittance to an active call.  The joining 

endpoint transmits a setup request including user identity, target Conference Identifier 

(CID), and intentions.  Message sequencing for call services depends heavily on network 

component architecture and the active MC selected from previous signaling phases.  

Detailed message flow for complex topologies can be found in [14].   

 

 
Figure 14.   New Endpoint Admittance to Ad Hoc Conference 
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Additional supplementary services are offered to H.323 endpoints according to 

network configuration.  These extensions are defined within ITU-T H.450.X series of 

recommendations [27].  Services include common telephony features, such as call 

transfer, hold, diversion, and caller ID.  

5. Call Termination 

The conclusion of the call sequence carries out the termination of logical 

channels.  Any endpoint or immediate call signaling entity can initiate the termination 

phase.  Figure 15 shows an example of endpoint directed call termination.  The end 

session command halts all media transmission prior to closing logical channels associated 

to the session.  In the event of control channel failure during an active VoIP call, H.323 

prevents immediate call termination.  If a means to re-establish failed H.225.0 or H.245 

signaling exists, the VoIP application will continue during a recovery effort.  The absence 

of any means to recover call control will initiate the termination sequence.  

 

 
Figure 15.   Endpoint Directed Call Termination Control Messages 

 

F. SUMMARY 

VoIP is an emerging multimedia application poised to revolutionize voice 

communications.  This chapter introduced the prominent VoIP enabling protocols used 

today.  H.323 components, signaling, and call sequence were presented with a focus on 

direct routing implementation.  The focus on VoIP network design will now shift to the 

metrics and methods recommended in support of VoIP performance analysis. 
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III. VOIP PERFORMANCE 

While traditional telephony enjoys a long history of performance evaluation and 

testing, VoIP is fairly new and presents unique challenges.  This chapter introduces the 

metrics and techniques used to assess voice quality in packet networks.  VoIP 

performance testing schemes and predictive electronic tools are studied from the 

perspective of cost, accuracy, and scalability.  Two approaches to voice recognition are 

presented.  These elements combine to form a foundation for the evaluation of thesis 

testbed data.  

A. VOICE QUALITY METRICS 

Before measurement and analysis of any network can take place, an observer 

must identify proper metrics for data collection.  This section examines voice quality as a 

function of delay, echo, and clarity [28].  Figure 16 illustrates the conceptual relationship 

of these variables to the human perception of speech quality.  An ideal network resides at 

the plot origin, where data delivery is instantaneous with no echo and perfect clarity.  The 

point representing voice quality moves away from the origin as realistic impairment 

factors are considered. 

 

 

Figure 16.   Relationship of Delay, Echo, and Clarity to Voice Quality (from [28]) 
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1. Delay 

Delay is defined as the amount of time required for a signal to traverse a network.  

Isolated forms of delay can be categorized by the fixed or variable contributions they 

provide to the cumulative end-to-end delay of a network.  Increasing amounts of delay 

tend to impose negative effects on call quality by forcing a half-duplex style conversation 

onto users.  Recommended values of delay for voice applications are established in [29].  

Figure 17 shows estimated user satisfaction for different delay values.  The plot uses a 

predictive modeling tool discussed later in this chapter. 

 
Figure 17.   Effect of Delay on User Satisfaction Estimated by E-model (from [29]) 

 

Cisco Systems has summarized the critical sources of delay for packet networks 

in [30].  Fixed delay can be attributed to several actions necessary to prepare and 

transport packets.  Codecs require a predictable number of clock cycles to read, 

compress, and de-compress voice data.  For example, the typical processing delay for 

G.729 amounts to 18 ms.  More fixed time is lost as the payload of each packet is filled 

with data, known as packetization delay.  Next, serialization delay accounts for the 
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transmission time required for frames to enter the network.  Finally, propagation delay 

between endpoints will vary according to link distance and the physical channel.  In long 

distance networks, signal propagation accounts for a majority of the fixed delay.     

Variable sources of delay provide a random element to the end-to-end cumulative 

value.  Propagation distance is only assumed to be a fixed value for individual packets.  

Random delay variation, called jitter, surfaces as packets take different paths though the 

network.  Packets also face non-uniform queuing delay while they compete for access to 

the physical medium.  The length of queues can change drastically based on local traffic 

loads and wide area network factors.  To reduce the impact of jitter, additional buffers are 

employed to ensure a relatively constant stream of voice packets is available to the 

receiver.  Modern jitter buffers contribute a variable delay since their length adapts to the 

statistics of arriving packet streams [30]. 

2. Echo 

Echo occurs in telephony applications when a talker’s voice returns to their own 

receiver.  This form of impairment is most prevalent in VoIP networks connected to the 

PSTN.  Echoes are primarily generated by an impedance mismatch within electrical 

junctions.  Unbalanced circuits are most common in connections where four-wire or 

digital transmission lines are converted into separate two-wire transmit and receive 

segments.  Traffic on the listening side of the network leaks from the receive line into the 

transmission path at these junctions [21].  A secondary impairment, called acoustic echo, 

is generated when output from a terminal speaker couples to the microphone [30].   

The impact of echo can be reduced by deploying echo cancellers at different 

locations within the network.  Cancellers are devices that monitor voice activity and 

mathematically model the probable echo.  Impairment effects are removed by combining 

regular voice traffic with a negative version of the modeled echo.  Contemporary VoIP 

terminals incorporate echo canceling algorithms that adapt and converge to a corrective 

model for the current voice session [30].   

Delay and attenuation of echo along the transmission path helps determine the 

level of impairment encountered during a conversation.  Figure 18 identifies acceptable 
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echo characteristics according to one-way transmission delay and Talker Echo Loudness 

Rating (TELR).  TELR is a measure of attenuation the echo encounters along the round 

trip path through a network.  In general, people tolerate the loudness rating of an echo 

less as delay increases.  Methods for calculating TELR are defined in [31].   

 

 
Figure 18.   Listener Tolerance of Talker Echo (from [31]) 

 

3. Clarity 

Clarity has the most expansive and subjective interpretation among the voice 

quality metrics.  The Internet Engineering Consortium defines clarity as the perceptual 

fidelity, clearness, and the non-distorted nature of a particular voice signal [28].  

Intelligibility of speech is often implied when describing clarity, but comprehension of 

spoken words does not always equate to a clear voice signal free of distortion.  It is 
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possible to extract content from a sentence of poorly reproduced speech.  This apparent 

contradiction in defining clarity reveals the challenges that emerge when defining the 

complex subjective nature of human verbal communication.  The interaction of clarity 

and intelligibility are managed differently by each assessment approach.  This section 

will introduce key factors that impact clarity and exhibit a potential to degrade the 

comprehension of verbal signal content. 

Noise is a diverse and persistent source of impairment to voice clarity.  In general, 

noise will manifest in the form of environmental factors, analog circuitry contributions, 

and bit errors.  Background noise entering a phone, or the receiver’s listening 

environment, can be regulated for testing events and daily use.  The factors of greater 

interest are those which cannot be readily altered by a user, such as bit errors attributed to 

a wireless channel.  Noise corrupts and distorts the speech reproduced at VoIP terminals 

[28].   

Packet loss robs the listener of entire speech blocks, degrading the perception of 

voice clarity.  Loss on this scale is often a function of network congestion.  When traffic 

volume reaches an unsustainable level buffers overflow, and packets that cannot be 

queued for transmission are dropped.  Time sensitive applications like VoIP also suffer 

packet loss when delay in packet arrival exceeds the bounds of the de-jitter buffer.  Any 

perceived benefit in a lengthy de-jitter buffer must be balanced against the contributions 

in end-to-end delay [28].   

Codecs assist in the management of network bandwidth at the cost of delay and 

clarity.   Every increase in codec compression ratio and complexity results in greater 

processing delay.  Clarity also declines when increased compression is used.  As fewer 

data bits are used to describe voice content, an algorithm’s ability to reconstruct the 

detailed perceptive elements of speech declines [28]. 

B. VOICE QUALITY ASSESSMENT AND PREDICTION 

Voice quality has been the subject of intense study over the past century.  

Telecommunications providers view voice quality perception as the key economic driver 

in the industry.  Understandably, there are a variety of assessment tools and 
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methodologies that have evolved with the modern telephony applications.  Within the last 

decade, most popular voice quality standards have posted updates or extensions to 

address VoIP specific concerns.  This chapter provides an introduction to current 

assessment techniques with a focus on cost, accuracy, and scalability to a VoIP testbed. 

1. Subjective Assessment of Voice Quality 

The oldest and most fundamental of the assessment techniques is the ITU-T 

recommendation on methods for subjective determination of transmission quality [6].  

This document provides testing format and grading guidance for telephony experiments 

attempting to capture direct human perceptions of performance.  Typical testing includes 

a five-level grading scale for the categories of listening-quality, listening-effort, and 

loudness-preference.  Each category is assigned a numerical score according to the 

description in Table 3.  These grades form a subjective measurement scale known as the 

Mean Opinion Score (MOS).  This thesis will focus on results related to MOS for the 

listening-quality scale. 

 

MOS Listening-Quality 
Scale 

Listening-Effort 
Scale 

Loudness-Preference 
Scale 

5 Excellent Complete relaxation; 
no effort required 

Much louder than 
preferred 

4 Good Attention required; 
no appreciable effort 

Louder than preferred 

3 Fair Moderate effort 
required 

Preferred 

2 Poor Considerable effort 
required 

Quieter than preferred 

1 Bad No meaning 
understood 

Much quieter than 
preferred 

Table 3.   MOS Grading Scale and Description 

 

Large scale subjective testing, polling several thousand subjects, is prized for 

capturing the intangible elements of psychology and mood.  MOS represents the 

benchmark all remaining techniques seek to replicate.     
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2. Objective Assessment of Voice Quality 

Unfortunately, subjective MOS is rarely scalable or practical for the fluid 

collection of data in a testbed.  The time and cost associated with human subjects are 

often prohibitive.  These limitations have served as industry drivers for accurate objective 

voice quality assessment techniques.   

In response to testing needs, the ITU-T published recommendations P.862 

Perceptive Evaluation of Speech Quality (PESQ), and P.563.  These standards provide 

computer based assessment models capable of mapping objective assessment data to a 

MOS-LQO (Listening Quality Objective) mirroring subjective scores.  Methods are 

distinguished by the manner in which they collect voice information for model 

processing.  Figure 19 compares the intrusive PESQ (P.862) testing schematic with the 

non-intrusive P.563 format.  Objective assessment methods have shown the ability to 

map MOS-LQO results with an error less than 0.25 MOS (± 0.25 on a 5-point scale) for 

72.3% of validation test conditions [5, 32].   

This thesis utilizes a pre-standard, objective, single-ended model related to P.563 

for baseline voice assessment.  Non-intrusive methods still exhibit limitations in their 

ability to assess channel delay characteristics.  The next section explores an ITU tool for 

predictive network modeling that addresses variable delay considerations. 

 

 

 
Figure 19.   Comparison of Intrusive and Non-intrusive Assessment Setup 
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3. Predictive Voice Quality Modeling 

Each of the preceding assessment techniques was designed to test voice quality 

within an established network.  Results from objective VoIP tests rarely translate into 

forward looking design recommendations.  This section presents a computational tool, 

known as the E-model, intended to aid engineers in transmission and network planning 

[33]. 

The E-model is a predictive mathematic representation of network impairments 

defined by component selection and the physical channel.  Psychological effects of each 

impairment factor are considered additive in nature.  The cumulative representation of 

elements is captured in the transmission rating factor, R , given by 

 

 ,O s d e effR SNR I I I A= − − − +  (3.1) 
 
where: 

,

signal-to-noise ratio,
impairments simultaneous to the signal,
impairments from delay,
packet loss, impairments from equipment (e.g., codec), and
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A for mobility convenience).

 

  

This thesis uses the E-model to explore the impact of link delay on R  value.  The delay 

impairment factor, dI  , can be isolated and divided into three factors 

 
 d dte dle ddI I I I= + +  (3.2) 

 

where dteI  represents impairments from talker echo, dleI  represents impairments from 

listener echo, and ddI  represents impairments excessive absolute delay.  Current 

hardware embedded echo cancellation results in the domination of dI  by the ddI  term.  
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Specific values of ddI  can be calculated using 
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where aT  is the absolute delay [33].  After impairments are incorporated into the 

transmission rating factor, conversion to an estimated subjective score helps predict user 

satisfaction. The R  value to MOS conversational quality estimate ( CQEMOS ) is 

calculated as follows: 
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where the range of 6.5 100R< <  bounds the valid range for the equation to calculate an 

R  value from CQEMOS .  Figure 20 illustrates the mapping of R value to CQEMOS  [33]. 

 
Figure 20.   R Value to MOSCQE Conversion (from [33]) 
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C. VOICE RECOGNITION 

Voice recognition is a technology that allows machines to artificially comprehend 

and act upon received voice signals.  Acceptable performance in early systems was 

limited by vocabulary size, speaker constraints, and specific conversational tasking (e.g., 

dialing a telephone number).  Modern systems aim to handle conditions more aligned 

with natural human conversation.  Current technologies devoted to recognition use 

isolated word recognition (IWR) or continuous speech recognition (CSR) depending on 

user needs [34].  This section introduces common processing techniques associated with 

IWR and CSR. 

1. Dynamic Time Warping 

Recognition of speech signals is complicated by the random temporal attributes of 

speaker behavior.  A person uttering a word or syllable produces subtle variations for 

each realization of a measured speech element.  First generation voice recognition 

algorithms resolve temporal changes with a template matching scheme, called Dynamic 

Time Warping (DTW) [34].   

DTW applies a trained reference template to an observed voice sample element 

(e.g., a single word or phoneme).  A mathematic tool, dynamic programming, analyzes 

the files for optimal decision matching.  By temporally stretching or compressing the 

reference file, it can be “warped” in time to provide symmetry with observations.  

Practical applications require well defined speech element boundaries for successful 

DTW application.  DTW-based recognition typically focuses on IWR where speakers are 

confined to cooperative situations with limited vocabulary.   CSR is possible using DTW, 

but template length and computational expense prohibit suitable scalability for 

commercial applications [34]. 

2. Hidden Markov Model 

DTW templates fail to address the inherent variability associated with a non-ideal 

speaker in CSR.  A human physiologic structure produces different variations of a 
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discrete sound based on inter word relationships.  Transitions within a language are 

defined by the lexical and syntactic rules that govern linguistic structure.  Contemporary 

voice recognition accounts for speaker variability by modeling sound production as a 

stochastic process.  The most prevalent method for CSR is the Hidden Markov Model 

(HMM).  This form of speech processing takes place in two phases, training and 

recognition [34].  

During the training phase, an HMM examines a reference file and stores statistical 

characteristics of spoken units (e.g., sentences, words, and phonemes).  Analysis reveals 

mathematical features of the isolated speech units, states, and the relationships extending 

to neighboring states.  Complex CSR requires feature resolution to the sub-word level.  

English, for example, contains approximately forty-two distinct sounds for word 

construction.  The HMM can exploit statistical aspects of both acoustic production and 

language structure.  Figure 21 illustrates the finite compilation of state associations that 

define a given HMM.  Numbered states represent the variable form of word units and 

grammatical organization. 

 

 

 
Figure 21.   Six State HMM 

 

The recognition phase treats the HMM as a finite state machine.  Sampled voice 

streams supply the model with observations.  Words are recognized by comparing the 

trained HMM to the incoming stream.  One stored model provides the highest likelihood 

of generating the observed string, and represents the designated match. So far, HMM 

applications have demonstrated CSR capabilities superior to DTW [34].  Dragon 

NaturallySpeaking is a HMM-based voice recognition tool used in this thesis. 
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D. SUMMARY 

This chapter introduced the voice quality metrics of delay, echo, and clarity.  

Factors that contribute to the behavior of each metric were explored in relation to a VoIP 

network.  A primer on ITU-T recommended methods for assessing and predicting voice 

quality was provided.  Conceptual approaches and techniques for voice recognition were 

briefly presented.   
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IV. TESTBED DESIGN 

This thesis develops a testbed designed to carry packet-based multimedia 

communications using the H.323 standard.  Cisco Systems Unified Voice products are 

deployed in a two-site distributed call processing model.  The overall design concept is 

intended to mirror a military field unit communicating with a geographically displaced 

higher headquarters element.  Routers, terminals, and software components are consistent 

with those found in emerging military networks [35].  The testbed occupies three 

equipment racks (East, Center, West) according to their appropriate position in the 

deployed network scenarios.  All MEU and field unit material resides in the east, data 

channel simulation at the center, and MEF in the west position.  The generic format of the 

testbed layout is shown in Figure 22. 

 
Figure 22.   Generic Testbed Layout 

 

The current configuration of the testbed allows for address and hardware 

expansion to meet future research goals.  The remainder of this chapter will discuss the 

details of existing components and the methods used to connect these individual 

elements.  Figure 23 provides a more detailed view of the testbed topology. 
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Figure 23.   Testbed Hardware Topology 

 

A. COMPONENTS 

The elements of the testbed can be traced to the functional components of the 

H.323 standard.  This section will introduce VoIP terminal devices, network control 

software, and the related physical hardware required to connect and route traffic for 

experiments.  

1. Phones 

All VoIP streams require a terminal interface for generation and termination.  

This testbed uses commercial IP phones, shown in Figure 24, to serve as the end user 

devices.  Operator and maintenance information for each of the Cisco 7911G and 7970G 

terminals are available in [36, 37].   
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Figure 24.   Cisco 7911G and 7970G IP Phones (from [36, 37]) 

 

a. CP-7911G 

This terminal represents a mid-level IP phone targeting an office or 

factory environment.  The pixel display promotes user navigation through setting 

information and call actions.  The phone supports eXtensible Markup Language (XML), 

IEEE 802.3af Power over Ethernet (PoE), G.711 and G.729 audio codecs.  All testbed 

Cisco 7911G phones utilize the PoE option.  A built-in data hub allows secondary device 

access to the parent network.  Appendix A explores the device web interface. 

b. CP-7970G 

This high-end IP phone targets the needs of the business environment.  

The terminal combines a color touch screen for call function and XML capable web 

browsing.  Additional soft keys are programmable through CallManager and the device 

settings menu.  These phones support PoE, G.711 and G.729 audio codecs.  All testbed 

Cisco 7970G phones utilize the PoE option.  A built-in switch allows two secondary 

device connections access to the parent network.  Appendix A explores the device web 

interface. 

2. Cisco 7800 Series Media Convergence Server (MCS) 

Each side of the testbed contains a Cisco 7800 series MCS.  These units contain 

Pentium D dual core 2.8-GHz processors, 2 GB RAM, and two removable 80-GB hard 

drives.  These servers store and run all Cisco CallManager 5.0(4) software for the testbed.  

In addition to their role in regular call processing tasks, CallManager allows these units to 
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be designated as Music On Hold (MOH) servers.  This capability allows WAV files to be 

stored and selectively accessed for playback during voice quality assessment 

experiments.  

3. Cisco CallManager 5.0(4) 

Cisco CallManager 5.0(4) acts as the call processing and administrative controller 

to the testbed device clusters.  This software system conducts signaling and call control 

for the deployed VoIP infrastructure.  In large scale VoIP networks a group of servers 

running CallManager are often joined together to maintain redundancy and call load 

balancing.  In contrast, the testbed design handles a small call load with no bounds on 

service reliability.  Network topology ensures signaling, call control, and voice streams 

between clusters are subject to the operator defined effects of the test channel.  Achieving 

this objective requires proper understanding of the CallManager administrative features.  

Four areas of interest to VoIP testing within this network are directory control, codec 

control, dial patterns, and MOH service.   

a. Directory Control 

Each terminal device registered to a CallManager receives a directory 

number allocation through manual or automatic discovery based on the experiment 

numbering plan.  To simplify testing, the network retains only the last four digits 

associated with the standard North American Numbering scheme.  The leading digit is 

reserved for cluster identification.  The three trail digits express the full range of the test 

clusters.  Table 4 shows the CallManager representation of this directory space.  X is 

considered a wildcard digit that can take any value from 0 to 9. 

 

MEF Directory Space MEU Directory Space 

1XXX 2XXX 
Table 4.   Testbed Directory Range 
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Table 5 defines the full directory of registered VoIP terminals.  During a 

typical call sequence, structure and range of each cluster’s directory drives route pattern 

matching and codec assignment.  Calls established between terminals within the local 

cluster are said to be on net (e.g., 1000 dials 1001).  Conversely, a call that connects to a 

terminal external to the local cluster is called off net (e.g., 1000 dials 2000). 

 
MEF Device Directory Number MEU Device Directory Number 

7970G (CG) 1000 7970G (MEU CO) 2000 

7911G (SgtMaj) 1001 7911 (MEU S-1) 2001 

7911G (G-2) 1002 7911 (MEU S-2) 2002 

7911G (G-3) 1003 7911 (MEU S-3) 2003 
Table 5.   Testbed Directory Plan 

 

b. Codec Control 

Table 6 shows audio codecs and estimated bandwidth consumption for a 

CallManager handling audio traffic.  Standard codec bandwidths are provided for 

comparison.  Actual bandwidth depends on packet size and overhead.  The Cisco 

advertised bandwidth calculations assume 30-ms data packets with IP headers included.  

A single call is composed of two voice streams.  Experiment settings must account for the 

network capability to carry codecs that are not supported by the VoIP terminal devices.  

Testbed phone traffic must use G.711u, G.711a, G.729a, or G.729b audio codecs. 

 
Codec Standard Bandwidth Cisco Advertised Bandwidth per Call  

(30 ms packets, IP headers included) 

G.711 64 kbps 80 kbps 

G.722 48, 56, or 64 kbps 80 kbps 

G.723 5.3 or 6.3 kbps 24 kbps 

G.728 16 kbps 16 kbps 

G.729 8 kbps 24 kbps 

Wideband -- 272 kbps 

GSM -- 29 kbps 
Table 6.   CallManager Audio Codecs (after [38]) 
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The CallManager organizes terminal devices associated to a cluster using 

administrative regions.  This approach to call processing accounts for LAN and WAN 

performance normally associated with geographic separation of network nodes.  These 

parameters are not restricted to true physical location and provide one method for 

variable codec assignment within the testbed.  Figure 25 shows CallManager execution of 

regional codec controls.  Application of this technique is demonstrated in Appendix B. 

 

 

Figure 25.   Example of CallManager Regions 

 

c. Dial Pattern Matching 

Dial pattern matching helps CallManager recognize a unique group of 

directory numbers for a specific call processing task.  The testbed uses programmed dial 

patterns to recognize calls that should terminate within, or external to, the local device 

cluster.  These on net and off net calls are processed in a different manner due to the 

location of registration information.  Testbed dial pattern matching and actions are shown 

in Figure 26. 

 

 
Figure 26.   Testbed Number Handling Using Dial Patterns 
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A call initiated from the MEF cluster to a terminal within the local group 

of devices (e.g., 1000 dials 1001) only needs call signaling and control services from a 

single CallManager.  A call involving terminals from different clusters (e.g., 1000 dials 

2000) requires negotiation between two CallManagers.  Testbed dial patterns are 

associated to a router configured as a H.323 gateway.  The dial patterns employ predot 

functionality for number sequence alteration and handling.  Figure 27 shows how the dial 

patterns function during a sample call. 

 

 

 
Figure 27.   Sample Dial Pattern Actions 

 

d. Music On Hold (MOH) 

One noteworthy challenge in telephony testbed design involves repeated 

uniform injection of a voice input.  Variation in background noise from the sender’s 

speaking environment is undesirable when conducting experiments to measure the impact 

of network channel noise.  The testbed overcomes this obstacle by exploiting 

CallManager’s MOH feature.  Reference [38] outlines acceptable file formats (e.g., 

WAV) for this purpose.  Sample voice inputs used for this thesis are available from [6] 

and [39].  These files incorporate the ITU recommended mixture of tempo, active, and 

passive elements of regular speech.  All thesis voice samples contain native English 

speakers from North America and Europe.  CallManager assigns a number and file name 

to each MOH audio sample.  The testbed stores and retrieves MOH for playback by 

designating the MEF Cisco 7800 series MCS a MOH server.  Table 7 displays the codecs 

supported by MOH playback compared to typical VoIP services.  CallManager refers to 
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terminal device or call cluster configuration parameters prior to conducting the signaling 

for a hold session.  The party that initiates a hold session determines the file for playback.  

Testbed phones point to the desired audio source number for each experiment.  A detailed 

list of instructions for uploading and managing MOH files can be found in Appendix B. 

 

Audio Codec CallManager 7911G 7970G MOH Service 

G.711 Yes Yes Yes Yes 

G.722 Yes No No No 

G.723 Yes No No No 

G.728 Yes No No No 

G.729 Yes Yes Yes Yes 

Wideband Yes No No Yes 

GSM Yes No No No 
Table 7.   Testbed Audio Codec Compatibility 

 

Signaling and RTP stream adjustments during a hold session combine to 

isolate a desired voice exchange for observation.  The packet capture graph in Figure 28 

reveals a new set of TCS messages in conjunction with a hold session initiation.  

CallManager closes the logical channel of the first conversation containing undesirable 

noise.  The RTP stream that emerges from a hold session plays a file from the MOH 

server subject only to desired testbed network effects. 
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Figure 28.   Message Flow During Hold Initiation 

 

4. Netgear FS752TPS Switch 

Local call clusters connect to subnet devices using a Netgear FS752TPS switch.  

Each unit includes 48 10/100 Ethernet ports and 4 Gigabit Ethernet ports.  The first 24 

ports provide standards based IEEE 802.3af PoE to all testbed IP phones.  All port 

management functions are controlled via a software and web interface.  The most current 

release of switch management software and documentation can be downloaded from the 

site shown in [40].  The switch provides network connectivity for the phones, MCS, and 

Cisco 2851 router within each CallManager cluster.  Stack management tools enable the 

switch administrator to monitor all testbed traffic flowing through the device via port 

mirroring.  In this mode, one port is programmed to broadcast transmit and/or receive 

traffic from any combination of the remaining ports.   Port 12 of each chassis was 

configured to duplicate all switch traffic.  These mirror connections facilitate network 

and call analysis using the open source packet sniffers discussed later in this chapter.  

Figure 29 is an example of the switch management web interface. 

 

Initial RTP stream with 
background noise from lab 
environment 
 
 
 
Terminal Capability Set 
negotiation for hold session 
 
 
 
 
Desired RTP stream of test 
file for capture and analysis 
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Phone ports 
with PoE 
enabled 

Monitor port  
and mirroring 
control 

Gigabit Ethernet 
network links 

 
Figure 29.   FS752TPS Switch Management Interface 

 

5. Cisco 2851 Router 

Call signaling, control, and voice traffic departing a cluster subnet will first 

encounter a 2851 router.  Each 2851 contains two Gigabit Ethernet ports and an IEEE 

802.11g capable radio interface.  Expansion slots are available to incorporate FXS analog 

phone input cards servicing two POTS phone lines per Cisco 2851 chassis.  Activating 

the VoIP specific features of each Cisco 2851 required some unique command line 

inputs.  Additional gateway instructions were necessary during the programming of the 

MEF router.  This section addresses the relevant VoIP items encountered during testbed 

design and construction.   

a. H.323 Gateway Configuration 

Any attempt to complete inter-cluster calls requires the coordination of 

both testbed CallManagers.  The MEF 2851 router handles the gateway task of 

negotiating cross cluster H.323 communications.  A previous section regarding dial 
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pattern matching linked off net call routing to the testbed gateway.  The following lines 

of the configuration file bind this routing event to a specific port on the gateway. 

Interface GigabitEthernet 0/1 

… 

  h323-gateway voip interface 

  h323-gateway voip bind srcaddr 172.16.230.1 

 

For the case of off net calls departing the MEU cluster, 172.16.230.1 represents the 

destination port for resolution of call processing tasks involving an external directory 

number.  The gateway receives these requests and forwards H.323 traffic according 

instructions provided by a dial peer. 

b. Dial Peers 

Dial peers are similar to dial patterns found in the CallManager setup.  Just 

as the local cluster matches internal or external calls to a pattern, a gateway matches a 

dialed number sequence to a target IP address.  The following configuration lines show a 

pattern match for calls from the MEU cluster to the MEF cluster.  Periods indicate 

wildcard digits within the dial peer number sequence. 

Dial-peer voice 10 voip 

  description Calls from MEU to MEF 

  destination-pattern 2… 

  session target ipv4: 172.16.220.2 

  codec transparent 

 

The session target supplies the CallManager IP address required for further call signaling.  

Testbed dial peers allow codec negotiation between endpoints.  H.245 messages arriving 

along the dial peer path were formatted using commands within the voice service menu. 

c. H.245 Configuration 

VoIP service parameters are maintained inside the router H.323 settings.  

The following configuration file section details voice service elements necessary for 
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testbed voice and MOH operations.  Empty capability TCS values must cross the gateway 

boundary to prevent call disconnect during hold session initiation.  Likewise, nonstandard 

messaging extends service functionality to material covered in [41]. 

voice service voip 

  allow-connections h323 to h323 

  h323 

    emptycapability 

    no call service stop 

    h245 passthru    tcsnonstd-passthru 
 

6. Cisco 7200 Router 

The Cisco 7200 series routers that connect the network backbone perform 

interface and protocol translation required to incorporate the data channel simulator.  

Each Cisco 7200 chassis contains Fast Ethernet and OC-3 Packet over SONET (PoS) 

ports.  Channel parameters are controlled along the PoS link between each Cisco 7200 

router.  Testbed data flow and protocol structure are shown in Figure 30.  This design 

enables each router within the testbed to conduct IP routing using OSPF. 

 

 
Figure 30.   Cisco 7200 Router Interfaces 

 

7. Adtech SX/14 Data Channel Simulator 

Configuration of the Adtech SX/14 provides direct control of the testbed channel 

characteristics.  An in depth review of the device is available from [42].  The data 

channel simulator has been placed in line between two Cisco 7200 series routers.  All 

interfaces operate on a SONET OC-3 155.52-Mbps link.  The Adtech SX/14 recovers a 
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clock signal from the MEFfiber router for proper network synchronization.  Operator 

adjustments can be made to delay and error characteristics of the channel.  Figure 31 

shows a typical data path for traffic inside the simulator.  East and West bound traffic 

represent packets destined for the MEUfiber and MEFfiber routers, respectively. The 

channel characteristics fall into two categories, delay and error.  East and West directed 

traffic can be controlled independently for asymmetric channel modeling.  Custom 

programs permit multiple combinations of delay and error to run in series.  The 

programming option can string individual channel settings together for a single run or 

loop the entire group for continuous operation.  

 

 

 
Figure 31.   Channel Simulator Data Path (After [42]) 

 

a. Delay Control 

The Adtech SX/14 uses variable length first-in-first-out delay buffers on 

each channel.  Alterations in the delay program result in recalculation of the delay buffer 

length.  OC-3 connections have a valid delay range from 0 to 324 ms with 1-µs 

resolution.  At data rates of 155.52 Mbps, the buffer can also be selected to a 

corresponding bit length with 48-bit resolution. 
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b. Error Control 

Each Adtech SX/14 channel has two error generators that insert logical 

inversions of transmission data.  The first generator is dedicated to the creation of random 

errors.  The second generator provides burst errors.  All error distributions are Gaussian.  

Random error rates can range from 121 10−×  to 1 error/bit.  Random error injection occurs 

continuously when no bursts are programmed.  In the presence of a burst event, the 

Adtech SX/14 applies the random error to burst gaps only.  Burst programs are set 

according to error length, error density, and gap length.  Valid burst length ranges from 1 

bit period to 99,999,999 ms.  Burst density determines the error rate within the burst 

length.  Density can range from 81 10−× to 1 error/bit.  Gap length determines the time 

separation from the end of one burst event bit to the start of the following event bit.  In 

the presence of a burst program, the random errors will only be injected during burst 

gaps.  Figure 32 shows a sample of random and burst error generation on the same 

channel. 

 

 
Figure 32.   Adtech SX/14 Generated Error Stream (after [42]) 

 

B. INTERNET PROTOCOL ADDRESS ASSIGNMENT 

All routers within the testbed are configured to network across a single OSPF 

area.  Subnet boundaries are used in a two-layer design architecture.  The core area 

consists of the Adtech SX/14 Data Channel Simulator, Cisco 7200 series routers, and 

terminates along the Cisco 2851 routers.  The access area contains two isolated 
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CallManager clusters and their associated terminal devices.  Figure 33 depicts the general 

structure of an IPv4 address according to network, subnet, and host identification 

sections. 
N bits M bits 32 – N – M bits 

Network ID Subnet ID Host ID 
Figure 33.   IPv4 Address Structure 

 

Table 8 shows a breakdown of the available address space within current testbed 

subnets.  This scheme provides a simple network hierarchy for data analysis.  Address 

space contained within current subnets is sufficient for potential network expansion. 

 
Location IP Address 

Space 
Subnet Mask Subnets 

Assigned 
Assigned Host 
IDs per Subnet 

Remaining Host 
IDs per Subnet 

Core 172.16.230.X 255.255.255.248 3 2 5 
MEF 172.16.210.X 255.255.255.0 1 7 247 
MEU 172.16.220.X 255.255.255.0 1 7 247 
Note: First and last address in subnet range are reserved for net ID and broadcast address respectively 

Table 8.   Division of the 172.16.X.X Address Space 

 

Figure 34 illustrates the testbed IP address assignment reflected in routing tables.  IP 

addresses 172.16.210.50 and 172.16.220.50 are designated for the switches associated 

with the subnet call cluster.  A web based device utility allows network administrators to 

browse and monitor operating status, or configure switch settings.  No regular network 

traffic originates or terminates at the IP addresses. 
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Figure 34.   Testbed IP Address Assignment 

 

C. DATA COLLECTION TOOLS 

This thesis utilizes a mixture of open source and commercial software platforms 

for data collection and analysis.  The open source material offers a free, flexible 

alternative to competing network monitor tools.  Commercial voice recognition software 

use is intended to extend and verify previous thesis research conducted at the Naval 

Postgraduate School.  Additional capability within existing network CallManager 

software was explored for statistical modeling and objective assessment of listening voice 

quality. 

1. Wireshark 0.99.5 

Wireshark, formerly released as Ethereal, is the result of an international open 

source project started in 1998.  Program download and reference documentation are 

available from [43].   The software transforms a normal network interface card into a 

general purpose traffic monitor.  Capture files can then be filtered according to the filters 
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supplied with the Wireshark download.  Figure 35 shows a normal testbed traffic capture.  

The top half of the screen shot provides a list of packet intercepts arranged by time of 

receipt.  The bottom half of the window expands one packet containing H.225.0 call 

setup information.  Hexadecimal content from the H.225.0 packet appears highlighted at 

the bottom left of the image.  This general overview of traffic on the testbed was helpful 

in detection of initial system configuration errors.  Captures at this level still include 

router management packets interlaced with the VoIP calls.  The remainder of this section 

will focus on Wireshark VoIP statistic options used to extract speech information from 

packet capture files. 

 

 
Figure 35.   Wireshark Packet Capture with Expanded H.225.0 Message 

 

Wireshark includes a tool for the filtering and deconstruction of any captured 

H.323 or SIP exchange.  Signaling messages are linked to the subsequent RTP streams 

for graphical display and decoding for playback.  Figure 36 shows the timeline analysis 

of an H.323 call.  The player has already decoded the voice traffic for playback using the 

variable jitter buffer setting of 20 ms.  Valid Wireshark jitter buffer range includes values 

from 0 to 50 ms in 1-ms increments. 
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Figure 36.   Wireshark VoIP Call Graph Analysis and RTP Player 

 

The VoIP statistic options are limited to calls between testbed CallManager 

clusters.  Internal cluster calls do not require an H.245/225.0 exchange since a single call 

manager conducts all processing.  In these cases, Wireshark does not detect an H.323 

event for decoding as a VoIP call.  External calls are intercepted as an H.323 event, but 

decoded voice playback requires Wireshark’s RTP player.  The constraint on voice file 

export format led to the testbed assimilation of another open source software tool. 

2. Cain and Abel v4.9.1 

The Cain and Abel pair of programs originally emerged as a password recovery 

utility for computers running Microsoft operating systems.  Updated versions have 

expanded the capability for the Cain half of the software package to probe network 

routing protocols and record VoIP conversations in a WAV format.  Testbed call 

intercepts use Cain in a two step process.  Upon initial connection to the network, via a 

Netgear switch, Cain conducts topology mapping and an ARP Poison Routing (APR) 

routine.  This step manipulates host ARP caches to conduct a form of man in the middle 

hack.  Figure 37 illustrates regular and APR enabled routing of VoIP packets between a 

MEU and non-MEU phone.   
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Figure 37.   Cain ARP Poison Routing 

 

Following the manipulation of router and host phone ARP cache, Cain silently intercepts 

the VoIP RTP stream for recording.  The second step isolates the desired RTP from the 

VoIP session for decoding and WAV file construction.  A single VoIP call within the 

testbed may result in multiple RTP streams based on the use of hold sessions or 

conference call options.  WAV files generated for analysis in this thesis are restricted to 

mono output format for speech to text conversion.  Figure 38 shows the appropriate Cain 

recording window.  Product download, supported codecs, and detailed instructions for 

using the technique described in this section are available from [44]. 

 

 
Figure 38.   Cain VoIP Recorder 

 

3. Dragon NaturallySpeaking 9.0 

Dragon NaturallySpeaking is a voice recognition software product produced by 

Nuance Communications.  Available background material on the specific techniques 
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exploited by Nuance engineers is limited to [45].  Tiantioukas examined the suitability of 

using commercial voice recognition software in the estimation of VoIP voice quality [9].  

This thesis extends the approach established by Tiantioukas to the testbed environment 

described in this chapter.   

The accuracy of voice recognition software improves with the initial training and 

subsequent use.  Corrections to translation errors also assist the software in improving 

translation quality.  A review of the product documentation suggests a Hidden Markov 

Model approach to voice recognition is used by NaturallySpeaking.  Testbed software 

initial training was conducted per device installation instructions for a new user.  WAV 

files recorded from Cain packet captures were processed through the Dragon speech to 

text translator.  No attempt was made to improve long term accuracy through text 

translation error correction.  Control files were generated by setting all data channel 

injected error levels to zero. 

4. Cisco Call Statistics 

Cisco IP phones have the ability to display a series of voice quality statistics 

compiled during the course of an established RTP stream.  Appendix A describes each 

element within the statistics table obtained from a Cisco 7970G web interface.  Cisco 

phone documentation [46] defines three key parameters: concealment ratio, concealed 

seconds, and MOS-LQK.  When an RTP stream sent to an IP phone suffers frame loss, a 

concealment frame is inserted by the digital signal processor (DSP) to mask the event.  

The concealment ratio is given by 

 

 Number of concealed framesConcealment Ratio  
Total number of speech frames

=  (4.1) 

 

where the concealed frames are calculated in three-second intervals.  Any one-second 

interval containing a mask frame from the DSP increments the concealed seconds 

counter.  Single second intervals including more than five percent masking are 

considered severely concealed.  A proprietary algorithm developed by Cisco computes 
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these metrics in a continuous fashion for the previous eight second window to calculate 

the MOS-LQK.  This objective assessment of voice quality is consistent with ITU 

provisional standard P.VTQ. 

D. SUMMARY 

In this chapter, a testbed design for non-intrusive objective voice quality 

assessment was introduced.  Detailed control of the network data channel includes error 

and delay metrics.  Finally, data capture and analysis tools were presented for extended 

application to thesis testbed experiments. 
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V. TESTBED EXPERIMENTS 

The experimental results presented in this chapter were generated through the 

evaluation of approximately ten hours worth of voice file transmission across the testbed 

VoIP network.  Individual test runs were carried out using one minute data collection 

periods.  Call statistics for each run were transferred to Matlab for collective analysis and 

plotting.  Voice files were captured and transferred to voice recognition software for 

subsequent clarity analysis.  Figure 39 shows the typical sequence of events required for 

each data run. 

 

 
Figure 39.   Experiment File Transmission and Data Collection Sequence 

 

Network statistics of interest included the bit error rate (BER), packet loss ratio, 

and MOS-LQK.  BER, commonly used as a metric in the performance evaluation of 

communication systems, is given by: 

 

 Number of bits received with errorBER  
Total number of transmitted bits

=  (5.1) 

 

Occasionally, network effects resulted in the failed delivery of entire packets.  A useful 

mathematical representation for evaluating these events is the packet loss ratio, given by: 

 

 Packets transmitted  Packets receivedPacket Loss Ratio = 
Packets transmitted

−  (5.2) 
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The remaining metric, MOS-LQK, is recovered directly from the Cisco 7970G phone 

terminal at the conclusion of each test.  To quantify the impact of BER and packet loss on 

received speech comprehension, this thesis uses the concept of remaining speech from 

[9].  Using voice recognition software, calls captured at the receiver side of the testbed 

via Cain are transcribed from WAV file format into a text document.  Text conversion is 

reviewed for translation accuracy.  Runs are then compared to the output text with the 

channel simulator error injection set to zero.  Remaining speech is calculated by 

 

 Number test file words transcribed correctlyRemaining Speech  
Number of control file words transcribed correctly

=  (5.3) 

 

A. TESTBED LIMITATIONS 

The first series of experiments established valid operating boundaries for 

remaining data collection runs.  Different combinations of BER, delay, and test files were 

used in an effort to stress the network to failure.  Limitations were documented in the 

area of BER, delay control programs, and voice recognition capability. 

1. BER 

Random error injection from the channel simulator serves as the principal factor 

for replicating conditions found in tactical wireless links.  The PoS interface used to 

mimic radio connections is limited by the BER monitor used to evaluate link status.  This 

results in a reduction of the acceptable BER dynamic range available for testing.  

Observation of the link status alarms along the PoS connection confirmed SONET loss of 

signal (SLOS) and SONET loss of frame (SLOF) thresholds at a BER of 53 10−× .  

Crossing the SLOS or SLOF threshold triggered a link status alarm that causes each 

Cisco 7200 router to disable the PoS link.  These actions are intended to evaluate the link 

for proper physical connection and the suitability of the fiber optic cable.  During a failed 

PoS link period, test calls in progress lost all active RTP streams.  No call signaling 
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messages are exchanged with terminals at the point of link failure.  Open logical channels 

void of traffic are observed as each IP phone sat idle with no voice output.  Call progress 

clocks on terminal displays continued to count up.  A subsequent reduction in channel 

simulator BER recovered the RTP connection between phones.  Call statistics at each 

terminal show no packet transfer and a default MOS-LQK of 2.0 during the failure 

window.  Burst error test runs with burst density equivalent to the previous random error 

parameters revealed matching limitations.  The restriction in RTP transfer eliminated the 

channel simulator BER range of 53 10−×  to 31 10−×  from further experiments.   

2. Delay Programs 

The simulation of channel delay characteristics includes both path delay and jitter.  

Ping test packets traversing the network indicate channel simulator settings are consistent 

and accurate to ± 1 ms in the reproduction of end-to-end delay.  The ability to produce 

and control jitter within the channel was explored through the use of channel delay 

programs.  Adtech SX/14 channel program features cycled through a series of channel 

conditions in loop format.  The delay profile was set to dwell on different values at 

irregular intervals in an attempt to create jitter within the network.  Observation of the 

PoS link revealed SLOS and SLOF alarm indications triggered by each program step.  

Each alarm event propagated a link failure between the Cisco 7200 routers.  These alarm 

events were associated to the time required for the channel simulator to recalculate the 

new buffer length for the corresponding delay program step.  During the calculation 

interval, a series of logical spaces or marks must be transmitted by the channel simulator.  

Both of these choices resulted in temporary PoS link failure.  These observations limited 

the use of channel simulator delay to a single setting.  In this mode, there is no associated 

control of jitter within the testbed. 

3. Voice Recognition 

The voice recognition software used in this thesis requires an interactive training 

process with a user.  Operator profiles are saved within the Dragon NaturallySpeaking 

software for reference during all dictation or transcription processing events.  This thesis 
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used two voice recognition profiles from North American native English speakers (male 

and female).  All software user options for training the profile were disabled or bypassed 

following initial configuration.  Of the four voice files used for testing in this thesis, two 

contain voice samples of European native English speakers.  Transcription attempts for 

captures from these European speakers failed to provide sufficient material needed to 

extract associated values for remaining speech.  Remaining speech results reported within 

this thesis are the product of multiple captures of the North American speaker files 

subjected to various channel conditions. 

B. OBJECTIVE VOICE QUALITY TESTS 

This section presents the results of testbed experiments obtained from the 

transmission of speech files using the restricted range of suitable channel settings.  BER 

settings for detailed examination were selected from an evaluation of MOS-LQK and 

packet loss observed during initial network stress tests.  Additionally, these channel 

conditions were intended to provide a range of data points where degraded testbed voice 

reception could be analyzed.  A summary of test parameters follows: 

• Test files:  European Female, European Male,  

 N. American Female, N. American Male 

• Codecs:  G.729, G.711u 

• Channel BER:  Random error ( 61 10−× , 65 10−× , 68 10−× , 51 10−× , 52 10−× ) 

 Burst errors disabled 

• Channel delay: 0 ms, Programs disabled 

1. MOS-LQK Results 

The first data runs examined the effect of channel BER on MOS-LQK values 

obtained from IP phones receiving a test file.  The results from G.729 transmissions are 

depicted in Figure 40.  All test files displayed strong correlation throughout testing.  To 

improve readability of plots, only results for the European Female and North American 

Male files are provided for remaining graphics in this chapter.  Additional test results for 

G.711 transmissions are shown in Figure 41.  A composite view of MOS-LQK results for 
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both codecs for N. American male and European female is shown in Figure 42.  The 

results are based on 15 Monte Carlo runs.   
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Figure 40.   MOS-LQK as a Function of BER for G.729 based on 15 Monte Carlo 

Runs 
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Figure 41.   MOS-LQK as a Function of BER for G.711 based on 15 Monte Carlo 

Runs 
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Figure 42.   MOS-LQK as a Function of BER for G.729 and G.711 for N. American 

Male and European Female based on 15 Monte Carlo Runs 

 

As the channel BER rate increases, each codec suffered a corresponding decline 

in MOS-LQK value.  Peak MOS-LQK value for G.729 codec traffic was limited to 3.7 by 

the Cisco listening quality algorithm.  A similar restriction is placed on G.711 MOS-LQK 

with values capped at 4.5.  The testbed capability to degrade G.729 listening quality 

scores was limited to less than a 0.2 deflection from maximum performance.  The 

corresponding decay in G.711 testing registered an approximate 0.95 reduction from the 

maximum score.  G.711 managed to provide superior MOS-LQK performance for all 

data points other than the most severe BER available to the testbed.  Similar MOS-LQK 

trends were observed across all four test files. 

The decline in MOS-LQK corresponding to the increased BER is examined 

further.  H.323’s use of RTP results in the delivery of individual bit errors contained 

within the payload of voice packets.  The successful transmission of corrupted voice 

samples has a detrimental impact on the perceived content of speech beyond the scope of 
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MOS-LQK.  MOS-LQK values only focus on the ability for the DSP to transmit frames 

related to delivered packets.  A more destructive event to MOS-LQK occurs when the 

channel bit error strikes VoIP packet headers.  Errors of this nature lead to packet loss, 

and an increase in DSP concealment frame transmission.  Thus, plots of MOS-LQK 

versus BER show a negative trend that should be corroborated by packet loss data.  

Likewise, successful frame transmissions in the presence of higher BER require further 

analysis to quantify the perceived value of speech content.  The next two sections address 

these concerns. 

2. Packet Loss Results 

After measuring the effect of BER on MOS-LQK values, data points were 

examined for packet loss impact on MOS-LQK.  The results of that analysis are 

illustrated in Figures 43 and 44 for G.729 and G.711, respectively.  Figure 45 provides a 

composite view of codec data.  All plots are based on 15 Monte Carlo runs. 
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Figure 43.   MOS-LQK Ratio as a Function of Packet Loss for G.729 based on 15 

Monte Carlo Runs 
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Figure 44.   MOS-LQK as a Function of Packet Loss Ratio for G.711 based on 15 

Monte Carlo Runs 
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Figure 45.   MOS-LQK as a Function of Packet Loss Ratio for G.729 and G.711 for N. 

American Male and European Female based on 15 Monte Carlo Runs 
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Analysis reveals a decrease in MOS-LQK consistent with the increase in lost 

packets for both codecs.  G.729 tests suffered less overall packet loss compared to G.711 

runs.  G.711 MOS-LQK scores outperformed G.729 despite greater packet losses.  All 

test files exhibited similar loss characteristics within each codec family of data points. 

The packet loss trend supports BER results with a near linear increase across all 

test points.  MOS-LQK values in this area of packet loss decline in response to the DSP 

concealment frame compensation for lost voice data.  While these tests show a narrow 

region of packet loss (0 to 4.5 percent), the related rate of MOS deviation is consistent 

with other objective prediction model calculations [33].  Variations of MOS-LQK value 

in localized regions of packet loss ratio value can be attributed to the distribution of 

concealment frame transmissions.  Concealment frame bursts resulted in severely 

concealed segments of an RTP stream with greater impact on MOS-LQK values.  Evenly 

spaced concealment produced less severe deviations in MOS-LQK.  The dynamic range 

of testing was limited by SONET link alarms.  Observed losses are specific to channel 

conditions and do not account for the packet loss VoIP networks experience due to 

congestion and jitter. 

3. Remaining Speech Results 

The results in this section explore the impact of BER and packet loss on the 

amount of comprehensible speech received by the endpoint terminal.  Figure 46 presents 

the amount of remaining speech compared to channel BER.  Figure 47 illustrates 

remaining speech as a function of packet loss.  Figure 48 shows plots illustrating the 

amount of remaining speech as a function of codec and MOS-LQK value.  All plots are 

based on 15 Monte Carlo runs. 

BER and packet loss affected the value of remaining speech differently according 

to the selection of the test file codec.  Overall, G.711 outperformed G.729 in analysis of 

speech intelligibility for the given channel conditions.  No loss in content was observed 

for G.711 until it was subject to the two highest amounts of channel error available.  In 

contrast, G.729 shows immediate reduction in remaining speech.  Loss factors associated 

with G.729 data were amplified due to the compression techniques applied by the codec.  
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The corruption of bits within packet payloads using G.729 influenced a larger portion of 

the RTP stream due to errors within a G.711 payload.  In general, compressed speech was 

more susceptible to degradation in intelligibility. 

Test file transmissions provide 150 to 180 words for transcription.  The average 

amount of speech lost to the worst case G.729 trial was five percent.  This represents 

three seconds of speech loss per minute, or seven words of the total test file.  The G.711’s 

worst case scenario suffered a three percent loss in comprehensible speech.  This loss 

corresponds to roughly two seconds per minute, or four words per test file run. 

Disparities were observed between voice recognition of the male and female 

speakers.  These differences can be attributed to the quality of initial software training 

and individual test file data content.  Voice recognition profiles used in this thesis are 

independent and gender specific.  The male voice profile provided a more accurate 

transcription of the control file.  Efficient software training, coupled with higher speech 

content in test files, helped skew any remaining speech data comparison in favor of the 

male speaker.  Since female test files contained seventeen percent less speech activity, 

they are more sensitive to word loss given an equal period of observation.  Remaining 

speech observations can be improved through the translation of multiple test files for 

each independent user.  Large scale intelligibility trends related to BER, packet loss, and 

MOS-LQK are still visible in light of these limitations. 

Analysis of remaining speech revealed an important distinction between the 

perception of VoIP listening quality, measured by MOS-LQK, and intelligibility.  Files 

captured at lower MOS-LQK scores still managed to deliver near perfect remaining 

speech results.  G.729 with a MOS-LQK of 3.7 provided superior comprehension to the 

listener when compared to G.711.   

The experiment identified a tradeoff between bandwidth and performance that 

often challenges VoIP network design.  In regulating the VoIP bandwidth, an 

administrator directly impacts the quality of speech provided to the receiving party.  

However, the cost associated with a less accurate reconstruction of human voice does not 

necessarily deter a listener from extracting useful information during a conversation.  
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More simply, a person can sound bad while accurately conveying their thoughts.  This 

subtle point is illustrated by the disparity in G.729 and G.711 results.  These observations 

also highlight the importance of establishing a broad concept of performance.  MOS-

LQK and intelligibility are measures of effectiveness that should be approached as 

symbiotic elements.  Analysis in isolation provides a conflicting and incomplete 

assessment of the call experience. 
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Figure 46.   Remaining Speech as a Function of BER for G.729 and G.711 based on 15 

Monte Carlo Runs 
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Figure 47.   Remaining Speech as a Function of Packet Loss Ratio for G.729 and 

G.711 based on 15 Monte Carlo Runs 
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Figure 48.   Remaining Speech as a Function of MOS-LQK for G.729 and G.711 

based on 15 Monte Carlo Runs 
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4. Delay Considerations 

End-to-end delay provides significant influence to perceived quality of two-way 

VoIP conversations.  MOS-LQK, by definition, only provides mapping of MOS estimates 

through the analysis of packet loss statistics and DSP activity.  Predictive quality 

modeling, introduced in Chapter III, accounts for the effect of delay when calculating 

conversational quality estimates, MOS-CQE.  This section provides a method for 

analytically incorporating channel delay forecasts into testbed MOS-LQK data.   

The network planning tool, known as the E-model, collects the additive 

contributions of network characteristics into the R  factor defined by Equation (3.1).  

Experimental MOS-LQK results can be transformed into corresponding R  values using 

Equation (3.5).  If we assume that all network conditions other than delay remain 

unchanged, the R  factor can be adjusted by calculating the ddI  shift from Equation (3.3).  

These updated R  values blend objective observations with forecast delay considerations.  

Converting the adjusted testbed results back to expected MOS with Equation (3.5) 

completes the extension of testbed experimental results to include the effect of delay. 

Figure 49 illustrates the application of predictive model adjustments to 

experimental results.  The plot shows estimated MOS for 200, 300, and 500-ms delays in 

the G.711 North American Male speaker file.  The maximum 500-ms delay corresponds 

to a geosynchronous satellite link round trip.  The plot indicates a near linear degradation 

of experimental results to expected MOS for delays in the range from 150 to 500 ms.   
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Figure 49.   Estimated MOS with E-model Delay Factor Correction as a Function of 

BER based on 15 Monte Carlo Runs 
 

C. SUMMARY AND DISCUSSION 

This chapter presented the results of experiments conducted on the VoIP testbed 

for the objective assessment of VoIP quality.  Limitations of the testbed were identified 

to establish a valid operating range for the experiments.  A sequence of test call results 

was presented using observations and calculation of metrics to include MOS-LQK, 

packet loss, and remaining speech.  Results were compiled and displayed using 

MATLAB.  Testbed channel simulations demonstrated the controlled degradation of 

VoIP traffic using either the G.729 or G.711 codec.  An approach to incorporate channel 

delay through predictive modeling was also provided.  

Future implementation of tactical VoIP will clearly require more in-depth 

research and development.  Current testbed channel simulations are based upon an 

imperfect SONET based representation of the wireless environment.  Each experiment 

provides a stepping stone for the evaluation of voice traffic in emerging VoIP networks.  
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As VoIP penetrates the military market, the typical metrics tied to commercial success 

may be incongruent with the needs of our deployed forces.  Military users are likely to 

value intelligibility over the fidelity of voice reconstruction.  Long delays may be 

tolerated for service to remote locations.  Codec selection, network effects, and 

conversational comprehension are elements best utilized in a holistic review of VoIP 

performance.  The testbed experiments described in this chapter provide a flexible 

platform for further exploration of VoIP voice quality characteristics in expeditionary 

scenarios.   
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VI. CONCLUSIONS 

This thesis explored the standards used to field VoIP applications. An ITU-T 

H.323-based VoIP testbed was constructed using Cisco routers, servers, IP phones, 

Netgear switches, and the Adtech SX/14.  Cisco CallManager provided call processing 

functions through a network monitored by Wireshark and Cain packet capture tools.  

Dragon NaturallySpeaking supplied voice recognition capability for an examination of 

speech intelligibility.  Additional metrics of BER, packet loss, and MOS-LQK were 

recovered during test calls using voice files from speakers of both genders and mixed 

nationality. 

Experiments provided results consistent with a conceptual approach to voice 

quality parameters that defined delay, echo, and clarity.  ITU-T subjective, objective, and 

predictive modeling tools were used to provide voice quality results consistent with 

telecommunications industry standards.  Experiments investigated the testbed’s capability 

to control VoIP performance through channel simulation and delay prediction. 

A. CONTRIBUTIONS 

This thesis accomplished two objectives.  The VoIP network established for 

experimentation provides a modern H.323 VoIP research platform.  Inherent scalability 

and flexibility of the design delivers a reusable foundation for future research efforts.  

The call processing software and the address scheme accommodate potential expansion 

of terminal device population and diversity.  Testbed network design also maintains a 

topology suitable for rapid reconfiguration.  Any alterations at the core area of the design 

preserve the work previously devoted to call cluster development and programming.  

Data channel simulator interfaces are isolated and positioned for prospective hardware 

upgrades.   

The testbed successfully facilitated the controlled degradation and measurement 

of voice quality.  Experiments and analysis explored in this thesis provide a cost effective 

approach to non-intrusive, objective voice quality assessment.  These techniques leverage 
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the benefits of open source monitoring tools while extending the use of commercial 

software for speech intelligibility measurement.  Observations indicate that network error 

management capabilities will be preserved throughout basic design alterations.  Delay 

consideration limitations were overcome through the adaptation of ITU-T E-model delay 

impairment factor calculations. 

B. FUTURE WORK 

This study was based on observations of voice quality metrics taken from a H.323 

VoIP testbed incorporating the Adtech SX/14 Data Channel Simulator for error and delay 

control.  The current testbed design exhibits some constraints and limitations open for 

improvement and future research opportunities.   

The network described in this thesis used minimal overhead and security settings 

during the transmission of voice traffic.  All components are isolated from outside data 

exchange and typical patterns of daily human interaction.  These conditions result in a 

level of artificiality that must be acknowledged.  True military networks must incorporate 

security policies while managing the balanced QoS necessary to parse capacity among 

data and voice needs of the warfighter.  While this work has emphasized H.323 

connections, future research should consider the incorporation of SIP based services as 

well. 

Some limitations imposed on the testbed are a product of the hardware available 

for network design.  The channel simulator, and associated PoS interface, introduced the 

primary limitations for experiment parameter range.  Current BER dynamic range, delay 

programming, and jitter control capability establish bounds on the range of channel 

characteristics for experimentation.  A more robust channel simulator and interface would 

help expand the design beyond PoS link failure restrictions.  Future designers altering the 

testbed should investigate the ability to establish an IEEE 802.11 or 802.16 bridge 

between the Cisco 2851 routers.  These RF links can connect to Spirent 5500 channel 

emulator according to the proposed network layout in Figure 50.  Such an enhancement 

would allow VoIP testing over a long distance wireless link while providing in-depth 

control over the channel fading environment. 
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Figure 50.   Suggested Testbed Alterations for Spirent SR5500 Connection to Cisco 

2851 Router IEEE 802.11 Interface 
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APPENDIX A 

Useful IP Phone Information 

All phones within the testbed have a web interface.  A user can navigate to this 

page by typing the target IP phone’s address into a browser.  Figure 51 shows the initial 

page that opens for the target device. 

 
Figure 51.   IP Phone Web Page 

 

A wide variety of data from the previous three voice streams connected to this 

device are maintained under the Streaming Statistics group of the phone homepage.  

Figure 52 breaks out available items and their description as defined in [46].  The most 

current stream data is available for direct view on 7970G screens by pressing the ? button 

twice during an active call.  Web displayed statistics can be exported to a Microsoft Excel 

spreadsheet by selecting the export link provided on the page. 
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Figure 52.   Streaming Statistics Description (after [46]) 

 

The phones terminals can be unlocked to alter settings by pressing **#. 
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APPENDIX B 

Cisco CallManager 5.0(4) Settings and Tips 

All alterations to the testbed CallManager settings are in accordance with [38].  

This appendix provides a general overview of some typical tasks used during testbed 

experiments and management.  Further documentation and current recommended 

practices are available from the Cisco Systems web page [www.cisco.com].  The 

remainder of this appendix is organized into the following task sections: 

 
• Login to testbed CallManagers 

• Codec selection 

• Music on Hold interface 

• Adding/removing phone services 

• Directory numbers 

• Gateway management 

• Dial patterns 

 

Login to testbed CallManagers: 

In order to access a CallManager web interface, a computer must have a valid IP 

address associated with the physical attachment to the testbed (i.e., 170.16.210.5 while 

attached to the switch on the MEF side of the network).  Login is accomplished through 

the following steps: 

 
• Open a web browser and search for the target CallManager IP address. 

• Type CCMAdministrator and the current password when prompted. 

Figure 53 shows the first page users encounter following a successful login sequence. 
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Figure 53.   CallManager Login 

 

Codec selection: 

 Screen shots of the following steps to select a codec are shown in Figure 54: 

• From the “Systems” menu, select “Region”, 

• Select the region titled “Default,” 

• Select the “Default” region in the window titled, “Modify Relationship to 
other Regions” (bottom left side of screen), 

• Select the desired codec from the pull down menu titled, “Audio Codec” 
(bottom center of screen), 

• Select the “Save” or “Cancel” button as appropriate, and 

• If prompted, select the “Reset” button to implement changes across the 
testbed. 
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Figure 54.   CallManager Codec Selection 
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Music On Hold (MOH) interface: 

 The Cisco 7800 series MCS on the MEF side of the testbed is configured to 

provide MOH server services.  An MOH server stores the WAV files used for testbed 

experiments.  Figures 55 – 58 provide screen shots of the steps required to add a WAV 

file to the testbed: 

• From the “Systems” menu, select “Service Parameters,”  

• In the “Server*” window, select the active MOH server IP address, 

• In the “Service*” window, select “Cisco IP Voice Streaming Media App 
(Active)” from the pull down list, 

• Scroll down and select the “Advanced” button, 

• Highlight all codecs of interest in the “Supported MOH Codecs” section, 

• Set the “Default MOH Volume Level” to 0, 

• Select the “Save” button, 

• From the “Media Resources” menu, select “Music On Hold Audio 
Source,” 

• Select the “Add New” button to browse for file to upload, and 

• Associate a free audio source number with the new file. 

Users can assign MOH files to a designated phone by following the adding/removing 

phone services steps, outlined in the next section of this appendix. 

 

 
Figure 55.   CallManager Service Parameters Control 
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Figure 56.   CallManager Streaming Media Application 
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Figure 57.   MOH Audio Source Settings 
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Figure 58.   MOH Audio Stream Number Assignment 

 

Adding/removing phone services: 

 The testbed auto discovery and assignment of device IP addresses has been 

disabled.  This allows users to assign directory numbers to terminal devices according to 

dial plans of the experiment.  The command sequence listed below describes the steps 

necessary to add/remove testbed IP phones, or to configure a specific MOH audio file to 

play when the selected terminal initiates a hold session.  Figures 59 shows screen shots of 

these commands. 

 
• From the “Device” menu, select “Phone,” then 

• Select the “Find” button. 

 

To add/delete phones: 

• Select the “Add New” or “Delete Selected” button accordingly.  

      (or) 

 To modify an existing phone’s MOH source and directory number: 

• Select the desired registered phone to edit, 

• Assign a “User Hold MOH Audio Source” from the pull down menu in 
the “Device Information” window, and 

• Assign an available directory to the phone number using hyperlinks in the 
“Association Information” window. 
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Figure 59.   CallManager Phone Device Windows 
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Directory numbers: 

 Users can review the current list of directory numbers by browsing to the 

CallManager configuration page illustrated in Figure 60: 

 
• From the “Call Routing” menu, select “Directory Number.” 

 

 
Figure 60.   CallManager Directory 

 

Gateway management: 

 Gateways are configured at two levels.  Router command line interface inputs 

build the appropriate configuration file.  Reference [47] provides instructions on gateway 

configuration.  After the configuration file is loaded to the gateway, it must be registered 

within the CallManager software.  This section will show the CallManager related items 

only.  Figure 61 depicts the steps required to associate a gateway with the CallManager 

software.  The testbed has one associated gateway identified by the current IP address 
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assigned to the MEF 2851 interface connected to the MEFfiber 7200 router.  In the event 

of network address adjustment or topology alterations, the gateway device name must be 

corrected using the following commands: 

 
• From the “Device” menu, select “Gateway,” 

• Type the IP address into the “Device Name*” field, 

• Select the “Save” button, and 

• If prompted, select the “Reset” button. 

 

 
Figure 61.   CallManager Gateway Configuration 
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Route patterns: 

 Route patterns link a sequence of dialed numbers to a specific call processing 

action.  Current patterns are associated to the registered gateway for on/off net 

identification.  On net number patterns receive an internal dial tone.  Internal cluster calls 

are managed locally though a single CallManager.  Off net number patterns receive an 

outside dial tone.  Calls to/from terminals external to the cluster require signaling 

between CallManager units.  In both cases, the route pattern is associated to the IP 

address of the gateway as shown in Figure 62.  The following commands are provided to 

associate a route pattern to the existing gateway: 

 
• From the “Call Routing” menu, select “Route/Hunt” and the submenu 

option “Route Pattern.” 

• Select a desired pattern to associate to the gateway, and 

• Ensure the pattern registers the gateway IP address under the “Associated 
Devices” column when complete. 

 

 
Figure 62.   CallManager Route Pattern Configuration 
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